A Content-Motion-Aware Motion Estimation for Quality-Stationary Video Coding
نویسندگان
چکیده
The block-matching motion estimation has been aggressively developed for years. Many papers have presented fast block-matching algorithms (FBMAs) for the reduction of computation complexity. Nevertheless, their results, in terms of video quality and bitrate, are rather content-varying. Very few FBMAs can result in stationary or quasistationary video quality for different motion types of video content. Instead of using multiple search algorithms, this paper proposes a quality-stationary motion estimation with a unified search mechanism. This paper presents a content-motion-aware motion estimation for quality-stationary video coding. Under the rate control mechanism, the proposed motion estimation, based on subsample approach, adaptively adjusts the subsample ratio with the motion-level of video sequence to keep the degradation of video quality low. The proposed approach is a companion for all kinds of FBMAs in H.264/AVC. As shown in experimental results, the proposed approach can produce stationary quality. Comparing with the full-search block-matching algorithm, the quality degradation is less than 0.36 dB while the average saving of power consumption is 69.6%. When applying the proposed approach for the fast motion estimation (FME) algorithm in H.264/AVC JM reference software, the proposed approach can save 62.2% of the power consumption while the quality degradation is less than 0.27 dB.
منابع مشابه
New adaptive interpolation schemes for efficient meshbased motion estimation
Motion estimation and compensation is an essential part of existing video coding systems. The mesh-based motion estimation (MME) produces smoother motion field, better subjective quality (free from blocking artifacts), and higher peak signal-to-noise ratio (PSNR) in many cases, especially at low bitrate video communications, compared to the conventional block matching algorithm (BMA). Howev...
متن کاملAn Improved Motion Vector Estimation Approach for Video Error Concealment Based on the Video Scene Analysis
In order to enhance the accuracy of the motion vector (MV) estimation and also reduce the error propagation issue during the estimation, in this paper, a new adaptive error concealment (EC) approach is proposed based on the information extracted from the video scene. In this regard, the motion information of the video scene around the degraded MB is first analyzed to estimate the motion type of...
متن کاملمقاوم سازی بردار حرکت در برابر خطای کانال جهت بهبود کیفیت ویدیوی دریافتی
According to progress of technology during the recent decades, video transmission through a wireless channel has found high demands. In this field, several methods have been proposed to improve video quality. Appearing error in motion vector values is one of the most important factors which can affect the video quality. In case of creating errors in motion vector, the synthesized video frames a...
متن کاملAn Improved Motion Estimation Search Algorithm for H.264/avc Standard
The virtual role of science and technology in modern life demands compression in multimedia application as it involves transfer a large amount of data. Motion estimation is one of the most important and complex block of all the existing video coding standards. In the video coding standard H.264/AVC, Motion Estimation is allowed to search multiple reference frames and the ME process is much more...
متن کاملContent-Aware Fast Motion Estimation Algorithm
In this paper, we propose the Content-Aware Fast Motion Estimation Algorithm (CAFME) that can reduce computation complexity of motion estimation (ME) in H.264/AVC while maintaining almost the same coding efficiency. Motion estimation can be divided into two phases: searching phase and matching phase. In searching phase, we propose the Simple Dynamic Search Range Algorithm (SDSR) based on video ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010